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The wave propagation in a simply supported travelling beam, studied in Part I of this
paper, has been used to derive the forced responses. Based upon the wave-propagation
principles, a simple method for constructing the closed-form transfer function of such
a beam has been presented. The use of this transfer function o!ers an easy alternative to the
usual modal analysis for obtaining the steady-state harmonic response. The e!ects of
non-linearities during the steady-state oscillation, maintained by a non-resonant hard
harmonic excitation, have also been studied. The present method, when compared to the
conventional Galerkin's technique, requires much less computational e!ort.
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1. INTRODUCTION

The vibration of any #exible continuous system is known to be associated with wave
propagation. In Part I of this paper, the free vibration of a simply supported travelling
beam has been studied using the wave-propagation theory. In such a system, the
natures of the waves change depending on various system parameters, like axial speed,
initial tension, etc. For any axial speed c below a certain value c

d
, one evanescent

and one propagating waves travel in both the upstream and downstream directions. For
speed c'c

d
, the evanescent waves disappear to give rise to two more downstream

propagating waves. During the modal vibration of the beam in any of the two speed
regimes, the phases of the associated waves change by an integer multiple of 2n after
travelling to and fro once across the span. Even in the presence of a non-linear term the
phase-closure principle holds good.

The response of a travelling string has been studied in terms of the travelling waves [1].
The calculation of the response to an initial displacement excitation becomes easy by
following the waves, propagating without distortion in two opposite directions. Further, the
transfer function (i.e., the Laplace transform of the Green's function), obtained by
analytically solving the boundary value problem [2], has been interpreted in terms of
di!erent propagating waves. It has also been brought out that the closed-form transfer
function gives a more accurate response to a harmonic force excitation than the usual
&modal analysis', where the response is a priori assumed to consist of a "nite number of
terms of an in"nite series [3]. However, in a dispersive medium like a beam where the
propagating waves are of signi"cantly complicated nature, the response calculation by wave
propagation principle is di$cult. For such a system, the closed-form transfer function has
been obtained by the analytical method [2].
0022-460X/00/370291#15 $35.00/0 ( 2000 Academic Press
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As discussed in Part I of this paper, the linear analysis becomes only approximate as the
axial speed of a travelling continuous system approaches the critical speed. In this speed
regime, the e!ects of the geometric non-linear terms, arising because of the large amplitude
of vibration, cannot be neglected. The concept of non-linear complex normal mode has
been derived to study the free vibration of such a non-linear system. These non-linear
complex modes were also used to get the near-resonance response of a harmonically excited
beam [4]. For this type of excitation, the participation of a single linear mode is of order of
magnitude higher than those of the other modes. However, for a non-resonant hard
excitation (i.e., an excitation with a large amplitude at a frequency far away from any of the
linear natural frequencies) a number of linear modes participate signi"cantly. Consequently,
the algebra involved in calculating the response using the Galerkin's technique [5] becomes
cumbersome.

In this paper, the principle of wave propagation is used to construct the transfer function
of a linear travelling beam in closed form. The present method of deriving the transfer
function of a travelling continuous system, though yields the same results obtained by the
modal analysis, enhances the physical understanding of the system. The transfer function is
used to obtain the response to any arbitrary excitation. The results of the linear analysis are
then extended to obtain the response of the beam to a non-resonant hard harmonic
excitation after including the non-linear terms. Since the linear response is obtained in
a closed form, the computation of the non-linear response, becomes easy by considering it
to be a perturbation to the linear response.

2. THEORETICAL ANALYSIS

2.1. LINEAR ANALYSIS

Consider a simply supported travelling beam of "nite span. The non-dimensional
equation of motion of the forced vibration of such a system, including the non-linear terms
can be written as [4]

L2w
Lq2

#2c
L2w
LxLq

#(c2!¹
0
)
L2w

Lx2
#

L4w
Lx4

"e CP
1

0
A
Lw

LxB
2
dxD

L2w
Lx2

#f (x, q) , (1)

with the boundary conditions

w(0, q)"w (1, q)"0

and

L2w (0, q)
Lx2

"

L2w (1, q)
Lx2

"0.

In equation (1), f (x, q) represents the non-dimensional exciting force and all other symbols
are explained in Part I of this paper. In what follows, the response of a linear travelling
beam (i.e., with e"0 in equation (1)), "rst to a point impulse excitation and then to any
arbitrary excitation, are derived using the method of wave propagation. To this end, the
following observations of the linear free vibration of the beam are important. As shown in
Part I, the nature of the waves generated during the free vibration are di!erent in two axial
speed regimes, namely, c(c

d
and c*c

d
. In the "rst case one propagating (A

1
-wave) and

one evanescent (A
3
-wave) waves travel in the downstream direction. Similarly the upstream

waves comprise of one propagating (A
2
-wave) and one evanescent (A

4
-wave) waves. In the
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second case, in place of the two evanescent waves, two more downstream propagating
waves (A

3
- and A

4
-waves) are generated. In either case, the following conditions are

satis"ed during a modal vibration.

det C
1 1 1 1

e*k1 e*k2 e*k3 e*k4

k2
1

k2
2

k2
3

k2
4

k2
1
e*k1 k2

2
e*k2 k2

3
e*k2 k2

4
e*k4D"0,

where k
j
( j"1, 2, 3, 4) corresponds to the wave number associated with the A

j
-wave.

The easiest way to understand the response of a continuous system by wave propagation
is to analyse the equation of motion in the frequency domain. This is done by writing the
equation of motion in terms of the Laplace transform of the variables, taken with respect to
time, as follows:

s2wL #2sc
LwL
Lx

#(c2!¹
0
)
L2wL
Lx2

#

L4wL
Lx4

"fK (x, s)!s
Lw

Lq
(x, 0)!w(x, 0)!2c

Lw

Lx
(x, 0), (2)

where wL (x, s) and fK (x, s) are the Laplace transforms of w (x, q) and f (x, q) respectively. The
initial con"guration and velocity of the beam are assumed to be trivially zero, i.e., at q"0,
w"0, Lw/Lq"0 and Lw/Lx"0 for all x. Further with f (x, q)"d(x!x

0
)d(q!q

0
), the

equation of motion becomes
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0
) e~sq0 . (3)

since f) (x, s)"d(x!x
0
)e~sq0.

The particular integral of equation (3) can be obtained as

wL (x, s)"
4
+
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For x'x
0
, the particular integral then becomes

wL (x, s)"
4
+
j/1

D
j
e*k*j (x~x0) , (5)

where

D
j
"

4
<

m/1,mEj

i

(k*
j
!k*

m
)
e~sq0 ,

and k*
j
's are the roots of the polynomial

s2#2isck*!(c2!¹
0
) (k*)2#(k*)4"0. (6)

For any complex value of s, the roots of the above polynomial are either real or complex.
Among the complex roots, those having positive (or negative) imaginary parts correspond
to the downstream (or upstream) evanescent waves. Of the real roots the negative ones
correspond to the downstream propagating waves and the positive ones denote the
upstream propagating waves. For s"iu, the possibilities of the two kinds of waves are
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already reported in Part I. Depending upon the relation between c and u, either two
propagating or four propagating waves may exist.

From the physical nature of the problem, it can be judged that all the terms in equation
(5) are not present at a point x'x

0
. This is because of the following reason. At point

x"x
0
, there exist four waves of strength D

j
( j"1, 2, 3, 4), out of which only those which

propagate in the downstream direction will have an e!ect on a point lying in the same
direction of x

0
. The e!ects of the upstream waves will not be felt at these points. For

example, for s"iu (u'0 and c(c
d
) only the contribution of A

1
- and A

3
-waves are to be

retained. But for c'c
d
, all the downstream propagating waves (i.e., the D

1
,D

3
and

D
4

terms) will contribute to the response at a point x'x
0
.

Thus, omission or inclusion of any term of the right-hand side of equation (5) depends
upon the values of k*

j
's. In the following, the response will be calculated only for s"iu and

c(c
d
. The other cases may be studied in an analogous manner. The particular integral

(equation (5)) then becomes

wL (x, s)" +
j/1,3

D
j
e*k*j (x~x0) for x*x

0
, (7)

The particular integral for x(x
0
can be found out by "rst substituting m"!x in equation

(2). Following the steps analogous to those carried out for x'x
0

and noting that !k*
j
's

are the roots of equation corresponding to equation (6), the particular integral is "nally
obtained as

wL (x, s)"!

4
+
j/1

D
j
e*k*j (x~x0) for x)x

0
,

Following the same reasoning, used for x'x
0
, the particular integral in this case has the

terms corresponding to the waves going in the upstream direction, i.e.,

wL (x, s)"! +
j/2,4

D
j
e*k*j (x~x0) for x)x

0
. (8)

It is to be noted that the particular integral implies the response of the beam only due to the
direct in#uence of the force. However, the waves generated by the external excitation are
re#ected at the boundaries and new terms appear. These terms are taken care of by retaining
the complementary function. The total response is thus given by

wL (x, s)"
4
+
j/1

C
j
e*k*j x# +

j/1,3

D
j
e*k*j (x~x0) for x*x

0
, (9)

"

4
+
j/1

C
j
e*k*j x! +

j/2,4

D
j
e*k*j (x~x0) for x)x

0
. (10)

One can also verify that the continuity of displacement, slope and moment exist at x"x
0
.

The unknown constants C
j
's can be obtained by ensuring the response satis"es the

boundary conditions. This yields

0"[D*]MCN#[F]MDN, (11)
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where
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j
's become
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adj

[F]MDN/det[D*], (12)

where [D*]
adj

is the adjoint matrix of [D*]. Substitution of the values of C
j
's into equations

(9) and (10), gives the transfer function for a travelling beam and will be denoted by
G(x,x

0
, s).

The response of the beam to any arbitrary excitation f (x, q) can be obtained as

wL (x, s)"P
1

0

G(x, f, s) f) (f, s) df ,

where f) (x, s) is the Laplace transform of f (x, q). To retrieve the time response w(x, q), to an
impulse excitation one has to take the inverse Laplace transform of wL (x, s) as

w(x, q)" lim
Y?=

1

2ni P
b`*Y

b~*Y

w( (x, s)esqds for q'0 (13)

where the value of b is so chosen that the integration converges. It is shown below that the
integration can also be evaluated using the contour integration theory of complex variable.
As seen from equations (5)}(10), the integrand contains a term e~sq0, for which the inverse
transformation is carried out separately for q(q

0
and q'q

0
.

For q(q
0
, the value of b is taken to be negative and the contour is devoid of any

singularity (see Figure 1). Thus,

w(x, q)"0 for q(q
0
. (14)

For q'q
0
, one must choose b to be an arbitrary positive number. Since the contour (see

Figure 2) now contains countably in"nite number of singular points, the integration can be
performed with the help of the following two theorems [6, 7].



Figure 1. Contour of the integration (equation (13)) for q(q
0
.

Figure 2. Contour of integration (equation (13)) for q'q
0
.
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Theorem 1. ¸et f (s) be a function which is analytic inside a simple closed path C and on C,
except for ,nitely many singular points a

1
, a

2
,2, a

m
inside C, then

P
C

f (s) ds"2ni
m
+
j/1

Res f (s) D
s/aj

.

the integral being taken in the counterclockwise sense around the path C [6].
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Theorem 2. If f
1
(s) and f

2
(s) are analytic in the neighbourhood of s

0
and if f

1
(s
0
)O0 but f

2
(s)

has a simple pole at s
0
, then the residue of f

1
(s)/f

2
(s) at s

0
is equal to f

1
(s
0
)/f @

2
(s
0
) [7].

The integration appearing in equation (13), when carried out, yields
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=
+
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j
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0
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(15)

where the value of the denominator is

L
Ls

(det[D*])"
4
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L
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j

det[D*]
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j
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.

In equation (15), c.c. denotes the complex conjugate of the previous term. The response
can be obtained for x)x

0
, after replacing D

1
and D

3
in equation (15) by D

2
and D

4
respectively.

It should be brought to the notice that the response can also be obtained in an in"nite
series form following the modal analysis, as detailed below.

In this method, the response is "rst assumed as
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=
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with zero initial conditions, where the vectors= and U
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(x) are de"ned in Part* I of this

paper. The unknown functions f
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0
), 0NT. The solution can be written in an expanded form as
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yielding the response as
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=
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0
. (16)

and zero for q(q
0
.

Before considering the steady state response of a travelling beam, it may be worthwhile to
mention that the response of a travelling string obtained by the wave propagation method
can be explicitly shown to be identical to equation (16). This is detailed in Appendix A.

The computation of the steady state response of a travelling beam to a harmonic point
load is very convenient by the wave-propagation method. For a linear beam, excited by
a harmonic excitation with frequency X (i.e., f (x, q)"F

0
d(x!x

0
) cosXq), the response is

obtained as

w(x, q)"
F
0

2
G(x, x

0
, iX)e*Xq#c.c., (17)
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where c.c. denotes the complex conjugate of the preceding term. It may be noted that the
response becomes in"nitely large if the beam is resonantly excited with X"ul

n
as

det[D*]"0.

2.1.1. Numerical results and discussions

In this section, numerical results of the linear response, obtained by the wave-
propagation method are presented. The initial tension and the axial speed of the beam is

taken as ¹
0
"1 and c@"c/(c

cr
)
1
"0)5 where (c

cr
)
1
"J¹

0
#n2.

Figure 3 shows the variation of DG(x, x
0,1

X)D with the frequency of excitation (X) when the
exciting force of unit amplitude as applied at x

0
"0)3 and the response is measured at

x"0)5. As shown in the "gure, the response amplitude is in"nitely large if the excitation
frequency X coincides with one of the natural frequencies of the beam and the point of either
excitation or observation does not fall on the nodal points of the corresponding mode.
Thus, the response amplitude at X"ul

2
, as depicted in the "gure, is zero since the point of

measurement coincides with the nodal point of the second mode. A large response is
obtained for this excitation (i.e., with X"ul

2
) at any other point. Figure 4 shows a very

large value of response obtained at x"0)75. It must be pointed out that interchanging the
positions of the excitation and observation does not alter the response. This reciprocity
relation has indeed been observed in the numerical computation.

As discussed in section 2.1, the response can also be computed in terms of the normal
modes, whereby a solution is constructed in a series form. However, only a few terms of the
in"nite series are usually taken into account. For the excitation frequency close to a natural
frequency of the beam, the corresponding normal mode contributes most signi"cantly. But
Figure 3. Linear frequency response function to a point excitation at x
0
"0)3 measured at x"0)5. c@"0)5.



Figure 4. Linear frequency response function to a point excitation at x
0
"0)3 measured at x"0)75. c@"0.5.

Figure 5. Linear frequency response function to a point excitation at x
0
"0)3 measured at x"0)75. c@"0.5.

**: wave propagation analysis; * - -*: one-term modal analysis; } } } : two-term modal analysis.

WAVE PROPAGATION IN A TRAVELLING BEAM 299



300 G. CHAKRABORTY AND A. K. MALLIK
if the excitation frequency is away from any ul
n
, the e!ects of all the neighbouring modes

become signi"cant. For a high excitation frequency a large number of modes are to be
considered making the computation quite expensive. However, in the wave propagation
method, the response is obtained accurately in the closed form. Figure 5 shows the
comparative results obtained by the wave-propagation method and also by the one- and
two-term modal approximations. For the chosen frequency range, one-term approximation
is very crude. As shown in the "gure, an addition of another mode makes the result closer to
the value given by the present method. It has been found that for a frequency X&ul

1
, the

"rst-mode approximation yields quite accurate results.

2.2. NON-LINEAR ANALYSIS

In this section, the non-linear steady state periodic response of the beam subjected to
a non-resonant hard excitation is analyzed. As the frequency of excitation is away from any
of the linear natural frequencies, various linear modes are excited. Unlike the near-
resonance excitation, in this case, the non-linear normal modes are not convenient for
obtaining the response. As will be shown below, the transfer function of the beam, derived in
the previous section, can be used in such a situation. Since the linear response in the present
method, contrary to the modal analysis, is obtained in a closed form, the non-linear analysis
becomes simpli"ed. Also the error due to neglecting the higher order modes is not
encountered in this method.

Assuming the excitation of the form f (x, q)"F
0
d(x!x

0
) cosXq, where the magnitude of

the force, F
0
, is su$ciently large for the e!ects of the non-linear term in equation (1) to

become signi"cant, even if the excitation frequency X is away from any of the natural
frequencies or their combinations, the response w(x, q) is sought in the following series form:

w(x, q)"w
0
(x, q)#ew

1
(x, q)#2. (18)

Substituting equation (18) into equation (1) and equating the coe$cients of the like powers
of e from both the sides, the following results are obtained:

e0 :
L2w

0
Lq2

#2c
L2w

0
LxLq

#(c2!¹
0
)
L2w

0
Lx2

#

L4w
0

Lx2
"f (x) cosXq , (19)

e1 :
L2w

1
Lq2

#2c
L2w

1
LxLq

#(c2!¹
0
)
L2w

1
Lx2

#

L4w
1

Lx4
"C P

1

0
A
Lw

0
Lx B

2
dxD

L2w
0

Lx2
. (20)

Equation (19) is solved to yield

w
0
(x; q)"

e*X q
2 P

1

0

G(x, f, iX) f (f) df#
e~*Xq

2 P
1

0

G(x, f,!iX) f (f) df (21)

or

w
0
(x, q)"

H(x, iX )

2
e*Xq#

H(x,!iX)

2
e~*Xq, (22)

where

H(x, iX )"P
1

0

G(x, f, iX ) f (f) df.
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Solution of equation (20) can be obtained by writing the right-hand side of the same
equation as follows:

CP
1

0
A
Lw

0
Lx B

2
dxD

L2w
0

Lx2
"[M

1
(x)e*X q#M

2
e3*Xq]#c.c., (23)

where

M
1
(x)"

1

8CP
1

0
A
LH(x, iX)

Lx B
2
dxD

L2H(x,!iX)

Lx2

#

1

4 CP
1

0

LH(x, iX )

Lx

LH(x,!iX)

Lx
dxD

L2H(x, iX)

Lx2

and

M
2
(x)"

1

8 CP
1

0
A
LH(x, iX)

Lx B
2
dxD

L2H(x, iX )

Lx2
.

With the help of equation (23), w
1
(x, q) is obtained as

w
1
(x, q)"e*X qP

1

0

G(x, f, iX )M
1
(f) df#e3*X qP

1

0

G (x, f, 3iX)M
2
(f) df#c.c. (24)

Substituting equations (22) and (24) in equation (18) the response of a non-linear beam, up
to the term o(e), is obtained. Further simpli"cation can be obtained if the force is assumed to
be a point harmonic one, i.e. f (x)"F

0
d(x!x

0
). In that case

H (x, iX )"F
0
G(x, x

0
, iX ),

and the values of M
1
(x) and M

2
(x) are evaluated by numerically computing a few de"nite

integrals.

2.2.1. Numerical results and discussion

The non-linear response of a beam subjected to a point harmonic excitation is presented
in this section. The axial speed, initial tension, amplitude of excitation and the small
parameter e are taken as follows:

c@"0)5, ¹
0
"1)0, F

0
"1000, e"10~2.

The Fourier transform of the response at the point x"0)75 to a non-resonant hard
excitation applied at x

0
"0)3 is shown in Figure 6. The response has both harmonic and

superharmonic components. Figure 7 shows the variations of harmonic components
(wX (x, q), say) of the response amplitudes, measured at two di!erent locations (x"0)5 and
x"0)75) of the beam, to a point excitation having frequency (X) away from both ul

1
("8)72855) and ul

2
("38)85552). It is seen that the e!ect of the non-linearity is more

pronounced at x"0)75, since the participation of the second mode is stronger for that
location.

As discussed earlier, the non-linear response can be obtained by either the wave-
propagation method or the Galerkin's technique. Figure 8 shows the amplitude of the
harmonic component of the response calculated by these two methods. While using the



Figure 6. Fourier transform of the non-linear response at x"0)75. F
0
"1000, c@"0)5, e"0)01, X"20, x

0
"0)3.

Figure 7. Variation of the harmonic components of responses to point harmonic excitation. F
0
"1000, c@"0)5,

e"0)01, x
0
"0)3.**: non-linear response measured at x"0)75;*d*: linear response measured at x"0)75;

}} } : non-linear response measured at x"0)5; } ) }: linear response measured at x"0)5.
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Galerkin's technique, numerical results were obtained by using only two linear modes. The
discrepancy between the results obtained by the two methods is seen to be more than that
for a linear beam. This is perhaps due to signi"cant coupling between various linear modes
in the presence of non-linearity.



Figure 8. Variation of the harmonic component of non-linear response to point harmonic excitation measured
at x"0)75. F

0
"1000, c@"0)5, e"0)01, x

0
"0)3.**: wave propagation method;* )*: Galerkin's technique.
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3. CONCLUSIONS

A method based on wave propagation has been proposed for determining the response of
a travelling beam. The closed-form transfer function of the linear beam is "rst obtained. The
equivalence of the modal and wave-propagation analyses for obtaining the linear, impulse-
response is established. The transfer function is subsequently used to derive the steady state
response of the same beam to a non-resonant hard excitation, after taking the e!ects of
non-linear term. In both the linear and non-linear cases, the method proves to be more
accurate and computationally more e$cient than other methods such as modal analysis for
a linear beam and Galerkin's technique for the non-linear one.
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APPENDIX A: FORCED RESPONSE OF A TRAVELLING STRING

For a linear travelling string, equation (3) is replaced by

s2w(#2sc
Lw(

Lx
#(c2!1)

L2w(
Lx2

"d(x!x
0
)e~sq0 . (A1)

The response from the wave-propagation analysis, formulated in section 2, is obtained as

w( (x, s)"C
1
ej1x#C

2
ej2x#D

2
ej2(x~x0) for x*x

0
(A2)

"C
1
ej1x#C

2
ej2x!D

1
ej1(x~x0) for x(x

0
(A3)

where j
1
"ik

1
"s/(1!c), j

2
"ik

2
"!s/(1#c), D

1
"!e~sq0/2s, D

2
"e~sq0/2s.

Applying the boundary conditions w( (0, s)"u( (1, s)"0, the following expressions of
C

1
and C

2
are obtained

C
1
"e~sq0[ej2~j1x0!ej2(1~x0)]/2s(ej1!ej2)

and

C
2
"e~sq0[ej2(1~x0)`j1!ej1(1~x0)]/2s(ej1!ej2)

which, when substituted into equations (26) and (27), yield

w( (x, s)"
[ej2(x~x0)!ej2x~j1x0!ej2(1~x0)~j1(1~x)#ej2~j1(1`x0~x)] e~sq0

2s (1!ej2~j1)
for x*x

0
, (A4)

"

[!ej2x~j1x0#ej2(1~x~x0)~j1#e~j1(x0~x)!ej2(1~x0)~j1(1~x)] e~sq0
2s (1!ej2~j1)

for x(x
0
.

(A5)

For q
0
"0, the above equations are identical with the transfer function obtained by Yang

and Tan [2]. As mentioned therein, s"0 is not a singular point since w (x, s) is "nite as
sP0. The only singular points are s"$iul

n
"$inn(1!c2), when j

1
"$inn(1#c)

"j(n)
1

, and j
2
"Ginn(1!c)"j(n)

2
.

The temporal response is obtained by inverse Laplace transform of equations (A4) and
(A5) as

w(x, q)"
=
+
n/1 C (ej(n)

2 x!ej(n)
1 x) (e~j(n)

2 x0!e~j(n)
1 x0)

2(1!ej(n)
2 ~j(n)

1 )#2sA
Lj(n)

1
Ls

!

Lj(n)
2

Ls Bej(n)
2 !j(n)

1 D e*ul
n(q~q0)# c.c. for q*q

0

or

w(x, q)"
=
+
n/1

(ej(n)
2 x!ej(n)

1 x) (e~j(n)
2 x0!e~j(n)

1 x0)

4inn
e*ul

n(q~q0)#c.c. for q*q
0
. (A6)

Since for a travelling string, the linear normal mode /
n
can be written as /

n
"ej(n)

2 x!ej(n)
1 x,

one can verify that

2ul
nP

1

0

/
n
/M
n
dx!2icP

1

0

/M
n

d/
n

dx
dx"4nn. (A7)
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Using equations (A6) and (A7) the response is "nally obtained as

w (x, q)"
=
+
n/1

/
n
(x)/M

n
(x

0
)

2u
n
:1
0
/
n
/M
n
dx!2ic:1

0
/M
n

d/
n

dx
dx

e*ul
n(q~q0)#c.c. for q*q

0
. (A8)

Equation (A8) is identical to equation (16).
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